Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,3,5,6-Tetrachlorobenzene-1,4-dicarboxylic acid

Qun Chen, Yingmei Xie, Chao Li, Mingyang He and Shengchun Chen*

Key Laboratory of Fine Petro-chemical Technology, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China
Correspondence e-mail: shengchunchenjpu@yahoo.com

Received 26 October 2007; accepted 28 October 2007

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.024 ; w R$ factor $=0.064 ;$ data-to-parameter ratio $=16.4$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{Cl}_{4} \mathrm{O}_{4}$, was synthesized by the reaction of 2,3,5,6-tetrachlorobenzene-1,4-dicarbonitrile and sulfuric acid. The molecule is located across an inversion center. The carboxyl group is tilted with respect to the benzene ring by an angle of 72.42 (7) ${ }^{\circ}$. Intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding helps to stabilize the crystal structure.

Related literature

For general background, see: Eufemia \& Epel (1998); Meazza et al. (2007).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{Cl}_{4} \mathrm{O}_{4}$
$V=525.55(13) \AA^{3}$
$M_{r}=303.90$
$Z=2$
Monoclinic, $P 2_{\mathrm{d}} / n$
Mo $K \alpha$ radiation
$a=5.9852$ (9) A
$\mu=1.12 \mathrm{~mm}^{-1}$
$b=7.0349$ (10) A
$T=296$ (2) K
$c=12.7012(19) \AA$
$0.30 \times 0.22 \times 0.20 \mathrm{~mm}$
$\beta=100.668$ (2) ${ }^{\circ}$

Data collection

Bruker SMART CCD area-detector	4350 measured reflections
diffractometer	1213 independent reflections
Absorption correction: multi-scan	1145 reflections with $I>2 \sigma(I)$
$(S A D A B S ;$ Sheldrick, 2002)	$R_{\text {int }}=0.021$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024 \quad 74$ parameters
$w R\left(F^{2}\right)=0.064$
H -atom parameters constrained
$S=1.01$
1213 reflections
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.82	1.84	$2.6410(15)$	166
Symmetry code: $(\mathrm{i})-x+\frac{1}{2}, y-\frac{1}{2},-z-\frac{1}{2}$.				

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Center for Testing and Analysis at Yangzhou University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2352).

References

Bruker (2000). SMART (Version 5.622), SAINT (Version 6.02A) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA. Eufemia, N. A. \& Epel, D. (1998). Mar. Environ. Res. 46, 401-405.
Meazza, G., Bettarini, F. \& Fornara, L. (2007). WO Patent No. 2007101587.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4549 [doi:10.1107/S1600536807053822]

2,3,5,6-Tetrachlorobenzene-1,4-dicarboxylic acid

Q. Chen, Y. Xie, C. Li, M. He and S. Chen

Comment

2,3,5,6-Tetrachlorobenzene-1,4-dicarboxylic acid is an important intermediate which can be used for the synthesis of herbicides (Eufemia \& Epel, 1998; Meazza et al., 2007). This paper presents the results of the single-crystal X-ray diffraction analysis of the title compound. A perspective view of the title compound is shown in Fig. 1. The bond lengths and angles are within normal ranges. In the molecule, the carboxyl group forms a dihedral angle of 72.42 (7) ${ }^{\circ}$ with the central benzene ring. Classical intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding occurs in the crystal structure (Table 1 and Fig. 2), which may be effective in the stabilization of the crystal structure. Short intermolecular $\mathrm{Cl} \cdots \mathrm{Cl}(1 / 2-x, 1 / 2+y, 1 / 2-z)$ contact of 3.62 (8) \AA is observed in the crystal structure.

Experimental

2,3,5,6-Tetrachlorobenzene-1,4-dicarbonitrile ($26.5 \mathrm{~g}, 100 \mathrm{mmol}$) was mixed with concentrated sulfuric acid (240 ml) and water (60 ml) under reflux at 463 K for 36 h . Upon standing this solution yielded crystalline 2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid, which was filtered, washed with water ($2 \times 50 \mathrm{ml}$), and dried under vacuum for $24 \mathrm{~h}(19.2 \mathrm{~g}, 63.2 \%$ yield). Single crystals were obtained by slow evaporation of the aqueous solution.

Refinement

H atom was placed in calculated position with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and refined in riding mode, $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Figures

Fig. 1. The molecular structure of (I) (thermal ellipsoids are shown at 30\% probability levels) [symmetry code: (A) $-x, 2-y,-z$].

Fig. 2. A packing diagram for (I). Dashed lines indicate hydrogen bonds and short intermolecular $\mathrm{Cl} \cdots \mathrm{Cl}$ contacts.

supplementary materials

2,3,5,6-Tetrachlorobenzene-1,4-dicarboxylic acid

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{Cl}_{4} \mathrm{O}_{4}$
$M_{r}=303.90$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=5.9852$ (9) \AA
$b=7.0349$ (10) \AA
$c=12.7012(19) \AA$
$\beta=100.668(2)^{\circ}$
$V=525.55(13) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=296(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.734, T_{\text {max }}=0.800$
4350 measured reflections
$F_{000}=300.0$
$D_{\mathrm{x}}=1.920 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 3424 reflections
$\theta=3.3-27.6^{\circ}$
$\mu=1.12 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, colorless
$0.30 \times 0.22 \times 0.20 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=1.01$
1213 reflections
74 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.03 P)^{2}+0.2817 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cl1	$0.27187(7)$	$1.04641(6)$	$0.19970(3)$	$0.04105(13)$
C12	$0.10264(7)$	$0.73074(6)$	$0.02950(3)$	$0.03963(13)$
O1	$0.4028(2)$	$0.53756(15)$	$-0.12663(9)$	$0.0455(3)$
H1	0.3466	0.4605	-0.1724	0.068^{*}
O2	$0.2347(2)$	$0.74573(15)$	$-0.24712(9)$	$0.0395(3)$
C2	$0.3240(2)$	$0.87853(19)$	$0.01385(10)$	$0.0272(3)$
C1	$0.3983(2)$	$1.01943(19)$	$0.08955(10)$	$0.0270(3)$
C3	$0.4255(2)$	$0.85885(18)$	$-0.07583(10)$	$0.0265(3)$
C4	$0.3431(2)$	$0.70930(19)$	$-0.15941(11)$	$0.0289(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0506(2)$	$0.0444(2)$	$0.0328(2)$	$-0.00380(17)$	$0.01984(16)$	$-0.00767(15)$
C12	$0.0409(2)$	$0.0375(2)$	$0.0414(2)$	$-0.01307(15)$	$0.00999(16)$	$-0.00066(15)$
O1	$0.0733(8)$	$0.0230(5)$	$0.0330(6)$	$0.0063(5)$	$-0.0091(5)$	$-0.0043(4)$
O2	$0.0572(7)$	$0.0265(5)$	$0.0294(5)$	$-0.0020(5)$	$-0.0064(5)$	$0.0004(4)$
C2	$0.0303(6)$	$0.0229(6)$	$0.0280(6)$	$-0.0014(5)$	$0.0044(5)$	$0.0008(5)$
C1	$0.0325(7)$	$0.0256(6)$	$0.0232(6)$	$0.0019(5)$	$0.0063(5)$	$-0.0010(5)$
C3	$0.0340(7)$	$0.0207(6)$	$0.0234(6)$	$0.0017(5)$	$0.0015(5)$	$-0.0012(5)$
C4	$0.0376(7)$	$0.0230(6)$	$0.0256(6)$	$-0.0002(5)$	$0.0041(5)$	$-0.0015(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cl} 1-\mathrm{C} 1$	$1.7199(14)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.3936(19)$
$\mathrm{C} 2-\mathrm{C} 2$	$1.7243(14)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.3951(18)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.3060(17)$	$\mathrm{C} 1-\mathrm{C} 3{ }^{\mathrm{i}}$	$1.394(2)$
$\mathrm{O} 1-\mathrm{H} 1$	0.8200	$\mathrm{C} 3-\mathrm{C} 4$	$1.5110(18)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.2084(18)$		$119.70(12)$
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{H} 1$	109.5	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$120.56(12)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.15(12)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.73(12)$

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 2$	$120.18(10)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{O} 1$	$123.97(13)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2$	$120.15(12)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$123.35(12)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{Cl} 1$	$119.39(10)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$112.69(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 1$	$120.45(11)$		
$\mathrm{Cl} 2-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$-178.81(10)$	$\mathrm{C} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.05(18)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 1$	$179.28(10)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$107.13(17)$
$\mathrm{Cl} 2-\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 1$	$0.47(16)$	$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$-71.6(2)$
$\mathrm{Cl} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$-73.18(17)$	
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-178.76(12)$	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$108.05(15)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.82	1.84	$2.6410(15)$	166

Symmetry codes: (ii) $-x+1 / 2, y-1 / 2,-z-1 / 2$.

supplementary materials

Fig. 1

Fig. 2

